# ALGEBRA PRECALCULUS

If \$a,b,c\$ & \$d\$ are positive real numbers satisfying the expression: \$\$a^4+b^4+c^4+d^4=4abcd\$\$ then, prove that \$a=b=c=d\$.

Bạn đang xem: Algebra precalculus

Approach:

\$\$a^4+b^4+c^4+d^4=4abcd\$\$\$\$a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2\$\$\$\$(a^2-b^2)^2 +(c^2-d^2)^2 = -2(ab-cd)^2\$\$\$\$(a^2-b^2)^2 +(c^2-d^2)^2+2(ab-cd)^2=0\$\$

so then we get

\$a^2=b^2;\$ \$c^2=d^2;\$ and \$ab=cd\$.

Hence:\$a=b=c=d\$.

I am looking for a method using \$AM-GM\$ inequality. Any help would be most appreciated!

Using AM-GM with \$a^4, b^4, c^4,d^4\$, we get

\$\$fraca^4 + b^4 + c^4 + d^44 ge sqrt<4>a^4 b^4 c^4 d^4\$\$

This means that

\$\$a^4 + b^4 + c^4 + d^4 ge 4abcd\$\$

With equality if & only if \$a^4 = b^4 = c^4 = d^4 implies a = b = c =d\$

Alternatively, we can just transform your proof into an AM-GM one:

We use AM-GM on \$a^4\$ and \$b^4\$, \$c^4\$ và \$d^4\$, \$a^2b^2\$ & \$c^2d^2\$.

\$\$fraca^4 + b^42 ge sqrta^4 b^4 \fracc^4 + d^42 ge sqrtc^4 d^4 \fraca^2 b^2 + c^2 d^22 ge sqrta^2b^2c^2d^2\$\$

Summing up the first two and then using the third inequality we get,\$\$a^4 + b^4 + c^4 + d^4 ge 2(a^2 b^2 + c^2 d^2) ge 2 cdot 2abcd ge 4abcd\$\$

With equality if và only if \$a^4 = b^4\$, \$c^4 = d^4\$ và \$a^2 b^2 = c^2 d^2\$ which means that \$a = b = c =d\$

mô tả
Cite
Follow
edited Apr 21, 2021 at 10:55
answered Apr 21, 2021 at 10:34 OussemaOussema
\$endgroup\$
địa chỉ cửa hàng a phản hồi |

Thanks for contributing an answer lớn onfire-bg.comematics Stack Exchange!

But avoid

Asking for help, clarification, or responding lớn other answers.Making statements based on opinion; back them up with references or personal experience.

Use onfire-bg.comJax khổng lồ format equations. onfire-bg.comJax reference.

Draft saved

Submit

### Post as a guest

Name
email Required, but never shown

### Post as a guest

Name
thư điện tử

Required, but never shown

Featured on Meta
Related
18
Prove that \$frac4abcd geq frac a b + frac bc + frac cd +frac d a\$
2
Contest Inequality - Is it AM GM?
1
Prove: \$frac1x-a+frac1x-b+frac1x=0\$ has a real root between \$frac13a\$ & \$frac23a\$, & one between \$-frac23b\$ & \$-frac13b\$
2
Inequality \$a^2+2b^2+8c^2geq2a(b+2c)\$
1
For positive real numbers \$a,b,c\$ prove that \$2+fraca^6+b^6+c^63ge ab+ac+bc\$
4
Prove that \$displaystyleprod_k=1^n frac1+x_kx_k geq prod_k=1^n fracn-x_k1-x_k\$
Hot Network Questions more hot questions

Question feed onfire-bg.comematics
Company
Stack Exchange Network
Site thiết kế / logo sản phẩm © 2022 Stack Exchange Inc; user contributions licensed under cc by-sa. Rev2022.6.17.42396